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The aim of this document is to provide an elementary introduction to the strategy that we developed
in [2, 5], notably by making use of a new idea which considerably shortens the original proof. It provides
a very short proof of the main result of [3] which proves the convergence of the norm of any polynomials
in independent GUE matrices. Besides I made it a point to make it as accessible as possible for people
unfamiliar with free probability. Thus the first three sections provide a mostly self-contained introduction
to the topic which is sufficient to understand the proof in the last section. If you are already familiar with
free probability you can probably skip most of it, however I would recommend to check the construction
of AN which leads to Theorem 1.4 since it is instrumental in the proof of Theorem 4.1.

1 Usual definitions in free probability
Let us begin by recalling the following definitions from free probability. Although some of them might

be a bit abstract for our need, we will try to specify exactly what we need afterward.

Definition 1.1. • A C∗-probability space (A, ∗, τ, ‖.‖) is a unital C∗-algebra (A, ∗, ‖.‖) endowed with
a state τ , i.e. a linear map τ : A → C satisfying τ(1A) = 1 and τ(a∗a) ≥ 0 for all a ∈ A. In this
paper we always assume that τ is a trace, i.e. that it satisfies τ(ab) = τ(ba) for any a, b ∈ A. An
element of A is called a (noncommutative) random variable. We will always work with a faithful
trace, namely, for a ∈ A, τ(a∗a) = 0 if and only if a = 0.

• Let A1, . . . ,An be ∗-subalgebras of A, having the same unit as A. They are said to be free if for
all k, for all ai ∈ Aji such that j1 6= j2, j2 6= j3, . . . , jk−1 6= jk:

τ
(
(a1 − τ(a1))(a2 − τ(a2)) . . . (ak − τ(ak))

)
= 0. (1.1)

Families of noncommutative random variables are said to be free if the ∗-subalgebras they generate
are free. Note in particular that if X and Y are free, then

τ(XY ) = τ(X)τ(Y ) (1.2)

• A family of noncommutative random variables x = (x1, . . . , xd) is called a free semicircular system
when the noncommutative random variables are free, self-adjoint (xi = x∗

i ), and for all k in N and
i, one has

τ(xk
i ) =

{
ck/2 if k is even,
0 else.

where cn is the n-th Catalan number.

Although we will introduce an alternative to this theorem. It is important to note that thanks to [4,
Theorem 7.9], that we recall below, one can consider free copies of any noncommutative random variable.

Theorem 1.2. Let (Ai, ϕi)i∈I be a family of C∗-probability spaces such that the functionals ϕi : Ai → C,
i ∈ I, are faithful traces. Then there exist a C∗-probability space (A, ϕ) with ϕ a faithful trace, and a
family of norm-preserving unital ∗-homomorphism Wi : Ai → A, i ∈ I, such that:
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• ϕ ◦Wi = ϕi, ∀i ∈ I.

• The unital C∗-subalgebras form a free family in (A, ϕ).

The main reason for us to introduce this theorem is because in this document we want to consider
the free product of MN (C) with the algebra generated by free semi-circular variables. However we will
do so with a specific construction after fixing a few notations concerning the spaces and traces that we
use in this paper.

Definition 1.3. • (eu)1≤N is the canonical basis of CN .

• TrN : A 7→
∑

1≤u≤N

e∗uAeu is the non-renormalized trace on MN (C).

• We denote Er,s = e∗res the matrix with coefficients equal to 0 except in (r, s) where it is equal to
one.

In order to interpolate our random matrices with free operators, we now need to define a space in
which they can both live in simultaneously. To do so, we define (ÃN , τ̃N ) as the free product of MN (C)
with a system of d free semicircular variable, that is the C∗-probability space built in Theorem 1.2.
Note that when restricted to MN (C), τ̃N is just the regular renormalized trace on matrices. However
this definition is not especially intuitive, besides we will need a different construction in the rest of the
document.

We fix d,N ∈ N, thanks to the help of the so-called full Fock space, one can easily build an explicit
C∗-probability spaces (A, ∗, τ, ‖.‖) where τ is a faithfull trace and in which there exists a free semicircular
system (xi

r,s)1≤i≤d,1≤r≤s≤N ∪ (yir,s)1≤i≤d,1≤r<s≤N . For a proof we refer to Corollary 7.17 of [4]. Next we
fix AN = MN (A), thus if 1 is the unit of A, one can easily view MN (C) as a subalgebra of AN thanks
to the morphism (ar,s) ∈ MN (C) 7→ (ar,s1) ∈ AN . We also define xN

i ∈ AN with

√
N (xN

i )r,s =


xi
r,s+i yi

r,s√
2

if r < s,

xi
r,s if r = s,

xi
s,r−i yi

s,r√
2

if r > s.

We endow AN with the involution (ai,j)1≤i,j≤N
∗

= (a∗j,i)1≤i,j≤N and the trace τN : A ∈ AN 7→
τ
(

1
N TrN (A)

)
. Then one has the following theorem.

Theorem 1.4. With the trace and the involution defined as above, AN is a C∗-probability spaces. Besides
the family (xN

i )1≤i≤d is a free semicircular system, and it is free from MN (C).

We delay the proof of this theorem to the end of the next section. Let us finally note that in the
last section we will drop the N and simply write xi instead xN

i since thanks to the previous theorem, we
have that the trace of a polynomial in xN is the same for any N (i.e. the trace of a polynomial evaluated
in a free semi-circular system).

2 Non-commutative polynomials and derivatives
Let Ad,2r = C〈X1, . . . , Xd, Y1, . . . , Y2r〉 be the set of noncommutative polynomial in d+2r variables.

We set q = 2r to simplify notations. Let us define several maps which we use frequently in the sequel.
First, for A,B,C ∈ Ad,q, let

A⊗B#C = ACB, m(A⊗B) = BA. (2.1)

We define an involution ∗ on Ad,q by X∗
i = Xi, Y ∗

i = Yi+r if i ≤ d+ r, Y ∗
i = Yi−r else. Then we extend

it to Ad,q by linearity and the formula (αPQ)∗ = αQ∗P ∗. P ∈ Ad,q is said to be self-adjoint if P ∗ = P .
Self-adjoint polynomials have the property that if x1, . . . , xd, z1, . . . , zr are elements of a C∗-algebra such
that x1, . . . , xd are self-adjoint, then so is P (x1, . . . , xd, z1, . . . , zr, z

∗
1 , . . . , z

∗
r ). This leads us to define the

following space.
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Definition 2.1. We define Fd,q to be the ∗-algebra generated by Ad,q and the family{
(z − P )−1 | P ∈ Ad,q is self-adjoint and z ∈ C \ R

}
.

We then define the following notion of non-commutative differential on this space.

Definition 2.2. If 1 ≤ i ≤ d, we define the noncommutative derivative ∂i : Fd,q −→ Fd,q ⊗ Fd,q by
induction with the following formula,

∀S, T ∈ Fd,q, ∂i(ST ) = ∂iS (1⊗ T ) + (S ⊗ 1) ∂iT,

∀i, j, ∂iXj = δi,j1⊗ 1.

∀i, j, ∂iYj = 0⊗ 0.

∀P ∈ Ad,q self-adjoint, ∂i(z − P )−1 =
(
(z − P )−1 ⊗ 1

)
∂iP

(
1⊗ (z − P )−1

)
.

(2.2)

Similarly, with m as in (2.1), one defines the cyclic derivative Di : Fd,q −→ Fd,q for S ∈ Fd,q by

DiS = m ◦ ∂iS .

In order to better visualize this notion of non-commutative differentials, it is worth noting that if
S ∈ Fd,q, given r matrices (Z1, . . . , Zr) and MN (C)sa the set of Hermitian matrices of size N , one can
define the following map,

LS : (MN (C)sa)d → MN (C)
X 7→ S(X,Z,Z∗),

and by induction it is easy to see that the differential of this map in X is the following,

d(LS)X : H ∈ (MN (C)sa)d 7→
∑
i

∂iS(X,Z,Z∗)#Hi.

Besides the map ∂i is related to the so-called Schwinger-Dyson equations on semicircular variable
thanks to the following proposition.

Proposition 2.3. Let x = (x1, . . . , xd) be a free semicircular system, z = (z1, . . . , zr) be noncommutative
random variables free from x, if the family (x, z) belongs to the C∗-probability space (A, ∗, τ, ‖.‖), then
for any Q ∈ Fd,q,

τ(xi Q(x, z, z∗)) = τ ⊗ τ(∂iQ(x, z, z∗)). (2.3)

Proof. If Q is a polynomial in xi, by linearity one can assume that Q is a monomial, but then we can
rewrite Equation (2.3) as

τ(xk+1
i ) =

k−1∑
l=0

τ(xl
i)τ(x

k−1−l
i ),

which is the induction formula satisfied by the Catalan numbers, i.e. by the moment of a semicircular
variable.

If we now assume that Q ∈ Ad,q, by induction we can write Q as a linear combination of product of
polynomials P1 . . . Pk where each Pj is a polynomial in (z, z∗) or in a single xl. Besides we can assume
that for any j, τ(Pj(x, z, z

∗)) = 0 and that we do not have two polynomials in the same variables
following each other. Then if k = 1, we are either in the previous situation or P1 is a polynomial in
(z, z∗), hence Equation (2.3) is satisfied in both case. Thus let us assume that k ≥ 2, if P1 is not a
polynomial in xi, thanks to Equation (1.1), we have that

τ(xi Q(x, z, z∗)) = 0.

If P1 is a polynomial in xi, since k ≥ 2, we also have that

τ(xi Q(x, z, z∗)) = τ
((

xiP1(x, z, z
∗)− τ(xiP1(x, z, z

∗))
)
P2(x, z, z

∗) . . . Pk(x, z, z
∗)
)

+ τ(xiP1(x, z, z
∗))τ (P2(x, z, z

∗) . . . Pk(x, z, z
∗))

= 0.
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Similarly, since we assumed that k ≥ 2, we also have that

τ ⊗ τ(∂iQ(x, z, z∗)) = 0.

Consequently, Equation (2.3) is satisfied for any polynomial. If Q ∈ Fd,q, then given P ∈ Ad,q self-
adjoint, for z ∈ C such that |z| > ‖P (x, z, z∗)‖, one can expand (z − P (x, z, z∗))−1 as a power series in
z−1, use the first part of the proof for polynomial and the equality∑

j≥0

∂iP
jz−j−1 =

(
(z − P )−1 ⊗ 1

)
∂iP

(
1⊗ (z − P )−1

)
.

Finally we conclude for any z ∈ C \ R by analyticity.

Proof of Theorem 1.4. Let us fix Z1, . . . , Zq ∈ MN (C), then for any polynomial P ∈ Ad,q, thanks to
Proposition 2.3, one can show that for any i,

τN (xN
i P (xN , Z)) = τN ⊗ τN (∂iP (xN , Z)).

Hence by induction on the degree of P , we get that

τN (P (xN , Z)) = τ̃N (P (x, Z)),

where x is a free semicircular system, free from MN (C), which we view as element of ÃN . Hence the
conclusion.

3 GUE random matrices
In this section we define Gaussian random matrices and states a few useful properties about them.

Definition 3.1. A GUE random matrix XN of size N is a self-adjoint matrix whose coefficients are
random variables with the following laws:

• For 1 ≤ i ≤ N , the random variables
√
NXN

i,i are independent centered Gaussian random variables
of variance 1.

• For 1 ≤ i < j ≤ N , the random variables
√
2N <XN

i,j and
√
2N =XN

i,j are independent centered
Gaussian random variables of variance 1, independent of

(
XN

i,i

)
i
.

When doing computations with Gaussian variables, the main tool that we use is Gaussian integration
by parts. It can be summarized into the following formula, if Z is a centered Gaussian variable with
variance one and f ∈ C1(R), then by integration by parts,

E[Zf(Z)] =
1√
2π

∫
R
f(x) xe−x2/2dx =

1√
2π

∫
R
f ′(x)e−x2/2dx = E[f ′(Z)]. (3.1)

A direct consequence of this, is that if x and y are centered Gaussian variables with variance one, and
Z = x+iy√

2
, then with f ∈ C1(C),

E[Zf(Z, Z̄)] = E[∂1f(Z, Z̄)] and E[Z̄f(Z, Z̄)] = E[∂2f(Z, Z̄)]. (3.2)

For example we have that given a GUE random matrix XN , one can write XN = 1√
N
(xr,s)1≤r,s≤N and
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then for any polynomial Q,

E
[
1

N
TrN

(
XN Q(XN )

)]
=

1

N3/2

∑
r,s

E
[
xr,s TrN

(
Er,s Q(XN )

)]
=

1

N3/2

∑
r,s

E
[
TrN

(
Er,s ∂xr,s

Q(XN )
)]

=
1

N2

∑
r,s

E
[
TrN

(
Er,s ∂Q(XN )#Es,r

)]
=

1

N2

∑
r,s

E
[
e∗s
(
∂Q(XN )#ese

∗
r

)
er
]

= E

[(
1

N
TrN

)⊗2 (
∂Q(XN )

)]
.

4 Main theorem
In this section we prove the main result of this document. It is a slightly weaker version of Lemma

3.2 of [5]. Indeed, in order to obtain a full asymptotic expansion, one needs to be able to bootstrap, i.e.
to reapply this lemma to the term under the integral in Equation (4.1). Although intuitively the proof of
the full lemma is rather similar, it does necessitate to introduce much heavier notations so we will avoid
doing so. Note finally that in this proof we introduce a new strategy which allows us to avoid having to
approximate our free variables by random matrices, which makes the proof considerably shorter.

Theorem 4.1. Let the following objects be given,

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,

• x, z1, z2 free families of d free semi-circular variables, defined as in Theorem 1.4,

• ZN = (ZN
1 , . . . , ZN

q ) deterministic matrices and their adjoints,

• z1s,t =
(
(1− e−s)1/2z1 + (e−s − e−t)1/2x+ e−t/2XN , ZN

)
,

• z2s,t defined similarly but with z2 instead of z1,

• z̃1s,t, z̃
2
s,t defined similarly but where we replaced z1, z2, x by free copies,

• Q ∈ Fd,q.

Then, for any N ,

E
[
τN

(
Q
(
XN , ZN

) )]
− τN

(
Q
(
x, ZN

) )
(4.1)

=
1

2N2

∑
1≤i,j≤d

∫ ∞

0

∫ t

0

e−s−t E
[
τN

(
Θz1

s,t,z̃
1
s,t,z̃

2
s,t,z

2
s,t ◦ (∂j ⊗ ∂j) ◦ ∂iDiQ

)]
ds dt.

where for any A,B,C,D ∈ Fd,q,

Θz1
s,t,z̃

1
s,t,z̃

2
s,t,z

2
s,t(A⊗B ⊗ C ⊗D) = B(z1s,t)A(z̃1s,t)D(z̃2s,t)C(z2s,t).

Proof. With
zt =

(
(1− e−t)1/2x+ e−t/2XN , ZN

)
,
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we have,

E
[
τN

(
Q
(
XN , ZN

) )]
− τN

(
Q
(
x, ZN

) )
= −

∫ ∞

0

E
[
d

dt
τN

(
Q (zt)

)]
dt.

We can compute

d

dt
τN

(
Q (zt)

)
=

e−t

2

∑
1≤i≤d

τN

(
DiQ (zt)

(
xi

(1− e−t)1/2
− et/2XN

i

))
.

Thus thanks to the Schwinger-Dyson equations (see Proposition 2.3) and Gaussian integration by parts
(see (3.2)), we get that

E
[
d

dt
τN

(
Q (zt)

)]
= E

e−t

2

∑
1≤i≤d

τN ⊗ τN

(
∂iDiQ (zt)

)
− 1

N

∑
1≤u,v≤N

τN

(
Eu,v ∂iDiQ (zt)#Ev,u

) .

(4.2)

For A,B ∈ Fd,q, let

ΛN,t := τN

(
A (zt)

)
τN

(
B (zt)

)
− 1

N

∑
1≤u,v≤N

τN

(
Eu,vA (zt)Ev,uB (zt)

)
.

Remark 4.2. Interestingly from there on we do not need to assume that we are working with GUE
random matrices anymore. In the definition of ΛN,t one could very well assume that XN are deterministic
matrices. In particular, if XN are Wigner matrices or GOE random matrices then most of the proof
is the same, except that we will have to deal with the extra term which will appear in (4.2) with the
cumulant expansion.

We now want to compute ΛN,t. To do so, we use that zt = z10,t = z10,t as well as Equation (1.2)
combined with the fact that zt has the same distribution as z1t,t or z2t,t (i.e. the trace of any polynomial
in zt is the same as the trace of this polynomial evaluated in z1t,t or z2t,t). This yields,

ΛN,t = τN

(
A
(
z1t,t
) )

τN

(
B
(
z2t,t
) )

− 1

N

∑
u,v

τN

(
Eu,vA

(
z10,t
)
Ev,uB

(
z20,t
) )

=
1

N2

∑
u,v

τ
(
e∗vA

(
z1t,t
)
ev

)
τ
(
e∗uB

(
z2t,t
)
eu

)
− 1

N

∑
u,v

τN

(
Eu,vA

(
z10,t
)
Ev,uB

(
z20,t
) )

=
1

N2

∑
u,v

τ
(
e∗vA

(
z1t,t
)
eve

∗
uB
(
z2t,t
)
eu

)
− 1

N

∑
u,v

τN

(
Eu,vA

(
z10,t
)
Ev,uB

(
z20,t
) )

=
1

N

∑
u,v

τN

(
Eu,vA

(
z1t,t
)
Ev,uB

(
z2t,t
) )

− τN

(
Eu,vA

(
z10,t
)
Ev,uB

(
z20,t
) )

=
1

N

∑
u,v

∫ t

0

d

ds
τN

(
Eu,vA

(
z1s,t
)
Ev,uB

(
z2s,t
) )

ds.

Besides,

d

ds
τN

(
Eu,vA

(
z1s,t
)
Ev,uB

(
z2s,t
) )

=
∑
j

e−s

2

(
τN

(
Eu,v ∂jA

(
z1s,t
)
#

(
z1

(1− e−s)1/2
− x

(e−s − e−t)1/2

)
Ev,uB

(
z2s,t
))

+ τN

(
Eu,vA

(
z1s,t
)
Ev,u ∂jB

(
z2s,t
)
#

(
z2

(1− e−s)1/2
− x

(e−s − e−t)1/2

)))
.
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Thus if we write ∂jA =
∑

A=A1XjA2
A1⊗A2 and ∂jB =

∑
B=B1XjB2

B1⊗B2, then thanks to Proposition
2.3,

τN

(
Eu,v ∂jA

(
z1s,t
)
#

(
z1

(1− e−s)1/2
− x

(e−s − e−t)1/2

)
Ev,uB

(
z2s,t
))

=
∑

A=A1XjA2

τN

((
z1

(1− e−s)1/2
− x

(e−s − e−t)1/2

)
A2

(
z1s,t
)
Ev,uB

(
z2s,t
)
Eu,vA1

(
z1s,t
))

= −
∑

A=A1XjA2, B=B1XjB2

τN
(
A2

(
z1s,t
)
Ev,uB1

(
z2s,t
))

τN
(
B2

(
z2s,t
)
Eu,vA1

(
z1s,t
))

= − 1

N2

∑
A=A1XjA2, B=B1XjB2

τ
(
e∗uB1

(
z2s,t
)
A2

(
z1s,t
)
ev
)
τ
(
e∗vA1

(
z1s,t
)
B2

(
z2s,t
)
eu
)

= − 1

N2

∑
A=A1XjA2, B=B1XjB2

τ
(
e∗uB1

(
z2s,t
)
A2

(
z1s,t
)
Ev,v A1

(
z̃1s,t
)
B2

(
z̃2s,t
)
eu
)
.

Note that we used Equation (1.2) in the last line. Similarly, we also have

τN

(
Eu,vA

(
z1s,t
)
Ev,u ∂jB

(
z2s,t
)
#

(
z2

(1− e−s)1/2
− x

(e−s − e−t)1/2

))
= − 1

N2

∑
A=A1XjA2, B=B1XjB2

τ
(
e∗uB1

(
z2s,t
)
A2

(
z1s,t
)
Ev,v A1

(
z̃1s,t
)
B2

(
z̃2s,t
)
eu
)
.

Consequently we have that,

ΛN,t = − 1

N3

∑
u,v

∑
j

∑
A=A1XjA2, B=B1XjB2

∫ t

0

e−s τ
(
e∗uB1

(
z2s,t
)
A2

(
z1s,t
)
Ev,v A1

(
z̃1s,t
)
B2

(
z̃2s,t
)
eu
)
ds

= − 1

N2

∑
j

∑
A=A1XjA2, B=B1XjB2

∫ t

0

e−s τN
(
A2

(
z1s,t
)
A1

(
z̃1s,t
)
B2

(
z̃2s,t
)
B1

(
z2s,t
))

ds

= − 1

N2

∑
j

∫ t

0

e−s τN

(
Θz1

s,t,z̃
1
s,t,z̃

2
s,t,z

2
s,t (∂jA⊗ ∂jB)

)
ds.

Hence in combination with Equation (4.2),

E
[
τN

(
Q
(
XN , ZN

) )]
− τN

(
Q
(
x, ZN

) )
=

1

2N2

∑
1≤i,j≤d

∫ ∞

0

∫ t

0

e−s−t E
[
τN

(
Θz1

s,t,z̃
1
s,t,z̃

2
s,t,z

2
s,t ◦ (∂j ⊗ ∂j) ◦ ∂iDiQ

)]
ds dt.

In particular, one has for any self-adjoint polynomial P that,

E
[
1

N
TrN

((
z − P (XN )

)−1
)]

= τ

((
z − P (x)

)−1
)
+O

(
1

N2|=(z)|5

)
,

from whom one can easily deduce the strong convergence of a family of independent GUE random
matrices (see the proof of Theorem 5.5.1 of [1], its main difficulty was the proof of Lemma 5.5.4 which
consists in proving the equation above).
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